Synthèse par voie organosilicique d'hétérocycles comportant deux hétéroatomes et un groupe vinylidène exocyclique

D. Damour, J. Pornet et L. Miginiac *

Laboratoire de Synthèse Organique, UA 574 CNRS, Université de Poitiers, 40, avenue du Recteur Pineau, 86022 Poitiers (France)

(Reçu le 4 février 1988)

Abstract

The ω -silyloxypropargyltrimethylsilanes: Me₃SiCH₂C=CCH₂X(CH₂)_nOSiMe₃ (X = O, S, NR; n = 1, 2, 3) react regiospecifically with aliphatic aldehydes to give new vinylidene heterocyclic compounds, such as 6-alkyl-5-vinylidene-1,3-dioxanes, 7-alkyl-6-vinylidene-1,4-dioxepanes, 7-alkyl-4-thia-6-vinylidene-1-oxepanes, 7-alkyl-4-aza-6-vinylidene-1-oxepanes, and 8-alkyl-7-vinylidene-1,5-dioxocanes.

Résumé

Les ω -silyloxypropargyltriméthylsilanes: Me₃SiCH₂C=CCH₂X(CH₂)_nOSiMe₃ (X = 0, S, NR; n = 1, 2, 3) agissent de manière régiospécifique sur les aldéhydes aliphatiques pour conduire à de nouveaux hétérocycles à six, sept ou huit chaînons, comportant deux hétéroatomes (identiques ou différents), ainsi qu'un groupe vinylidène exocyclique.

Introduction

Les propargyltriméthylsilanes réagissent de manière régiospécifique avec les réactifs électrophiles, en présence d'un catalyseur, et sont, de ce fait, des intermédiaires de synthèse très utiles pour atteindre la structure allénique [1-16]:

$$Me_{3}Si - C = C - + E^{+} \xrightarrow{acide de Lewis} C = C = C(E) - C$$

Nous avons récemment montré [17,18] que les silyloxypropargyltriméthylsilanes: $Me_3SiCH_2C=C(CH_2)_nOSiMe_3$ (n = 2, 3, 4, 5) (1) et $Me_3SiC(R^1)(R^2)C=CC(R^3)$ -(R^4)OSiMe_3 (2) étaient des réactifs très commodes pour la préparation en une étape, à partir d'aldéhydes variés, d'hétérocycles comportant un seul atome d'oxygène et de dioxannes-1,3, à groupe vinylidène exocyclique:

Il était intéressant d'essayer de généraliser cette méthode de préparation d'hétérocycles (réaction de cyclisation in situ) à partir d' ω -silyloxypropargyl-triméthylsilanes possédant un autre hétéroatome dans leur chaine carbonée, tels que les silanes 3: Me₃SiCH₂C=CCH₂X(CH₂)_nOSiMe₃ (X = O, S, NR).

En effet, de tels composés sont susceptibles de conduire par action sur un aldéhyde, à de nouveaux cycles possédant deux hétéroatomes identiques ou différents:

$$Me_{3}SiCH_{2}C \equiv CCH_{2}X(CH_{2})_{n}OSiMe_{3} + RCHO \longrightarrow CH_{2} = C = C \xrightarrow{(CH_{2})_{n}} O$$

Nous avons, dans un premier temps, étudié l'action sur les aldéhydes 4: CH₃CHO (4a), C₂H₅CHO (4b), (CH₃)₂CHCHO (4c), CH₂=CHCH₂C(CH₃)₂CHO (4d), C₆H₅CHO (4e),

des trois ω -silyloxypropargyltriméthylsilanes (n = 2): Me₃SiCH₂C=CCH₂OCH₂ CH₂OSiMe₃ (**3a**), Me₃SiCH₂C=CCH₂SCH₂CH₂OSiMe₃ (**3b**), Me₃SiCH₂C=CCH₂ N(iPr)CH₂CH₂OSiMe₃ (**3c**),

puis nous avons essayé de généraliser la réaction observée pour n = 2 aux cas de n = 1 et n = 3, à partir des silanes **3d** et **3e**, comportant deux atomes d'oxygène: Me₃SiCH₂C=CCH₂OCH₂OCH₂OSiMe₃ (**3d**), Me₃SiCH₂C=CCH₂OCH₂CH₂CH₂OSiMe₃ (**3e**).

Résultats et discussions

Préparation des silanes 3

Leur préparation est facilement réalisée par des méthodes de synthèse organométallique classiques.

Cas de **3a** et de **3e**

$$HO(CH_{2})_{n}OH \xrightarrow{(1) Na}_{(2) HC \equiv CCH_{2}Br} HC \equiv CCH_{2}O(CH_{2})_{n}OH_{(3) H_{2}O} (Rdt. 44-48\%) [19-21]$$
$$HC \equiv CCH_{2}O(CH_{2})_{n}OH \xrightarrow{(1) APTS ou HCl}_{(2) CH = CH(CH_{2})_{3}O} HC \equiv CCH_{2}O(CH_{2})_{n}OTHP_{(2) CH = CH(CH_{2})_{3}O} (Rdt. 70-90\%) [22,23]$$

$$\begin{aligned} \text{HC}=\text{CCH}_{2}\text{O}(\text{CH}_{2})_{n}\text{OTHP} \xrightarrow{(1) \text{n-}C_{4}H_{9}\text{Li}/\text{THF}} \\ & \text{Me}_{3}\text{SiCH}_{2}\text{C}=\text{CCH}_{2}\text{O}(\text{CH}_{2})_{n}\text{OTHP} \xrightarrow{\text{PPTS}} \\ & \text{(Rdt. 66-82\%) [24]} \end{aligned}$$

$$\begin{aligned} \text{Me}_{3}\text{SiCH}_{2}\text{C}=\text{CCH}_{2}\text{O}(\text{CH}_{2})_{n}\text{OTHP} \xrightarrow{\text{PPTS}} \\ & \text{C}_{2}\text{H}_{3}\text{OH} \end{aligned}$$

$$\begin{aligned} \text{Me}_{3}\text{SiCH}_{2}\text{C}=\text{CCH}_{2}\text{O}(\text{CH}_{2})_{n}\text{OH} \xrightarrow{\text{C}_{2}\text{H}_{3}\text{OH}} \\ & \text{(Rdt. 64-70\%) [22]} \end{aligned}$$

$$\begin{aligned} \text{Me}_{3}\text{SiCH}_{2}\text{C}=\text{CCH}_{2}\text{O}(\text{CH}_{2})_{n}\text{OH} \xrightarrow{\text{C}_{2}\text{H}_{3}\text{OH}} \\ & \text{(Rdt. 81-94\%) [25]} \end{aligned}$$

$$\begin{aligned} \text{Me}_{3}\text{SiCH}_{2}\text{C}=\text{CCH}_{2}\text{O}(\text{CH}_{2})_{n}\text{OSiMe}_{3} \\ & \text{(Rdt. 81-94\%) [25]} \end{aligned}$$

$$\begin{aligned} \text{Cas de 3b} \end{aligned}$$

$$\begin{aligned} \text{HO}(\text{CH}_{2})_{2}\text{SH} \xrightarrow{(1) \text{NaOH}/C_{2}\text{H}_{3}\text{OH}} \\ & \text{(2) CICH}_{2}\text{C}=\text{CCH}_{2}\text{SiMe}_{3} \\ & \text{(Rdt. 84\%) [21]} \end{aligned}$$

$$\begin{aligned} \text{Me}_{3}\text{SiCH}_{2}\text{C}=\text{CCH}_{2}\text{S}(\text{CH}_{2})_{2}\text{OH} \xrightarrow{(\text{CISIMe}_{3})} \\ & \text{(Rdt. 76\%) [25]} \end{aligned}$$

$$\begin{aligned} \text{Cas de 3c} \end{aligned}$$

$$\begin{aligned} \text{(CH}_{3})_{2}\text{CHNH}_{2} + \overrightarrow{\text{CH}_{2}\text{CH}_{2}\text{O}} \rightarrow (\text{CH}_{3})_{2}\text{CHNH}(\text{CH}_{2})_{2}\text{OH} \\ & \text{(Rdt. 76\%) [25]} \end{aligned}$$

$$\begin{aligned} \text{Me}_{3}\text{SiCH}_{2}\text{C}=\text{CCH}_{2}\text{N}(\text{i-Pr})(\text{CH}_{2})_{2}\text{OH} \\ & \text{(Rdt. 76\%) [26]} \end{aligned}$$

$$\begin{aligned} \text{(CH}_{3})_{2}\text{CHNH}_{2} + \overrightarrow{\text{CH}_{2}\text{CH}_{2}\text{O}} \rightarrow (\text{CH}_{3})_{2}\text{CHNH}(\text{CH}_{2})_{2}\text{OH} \\ & \text{(Rdt. 66\%) [27,28]} \end{aligned}$$

$$\begin{aligned} \text{Me}_{3}\text{SiCH}_{2}\text{C}=\text{CCH}_{2}\text{N}(\text{i-Pr})(\text{CH}_{2})_{2}\text{OH} \\ & \text{(Rdt. 76\%) [25]} \end{aligned}$$

$$\begin{aligned} \text{Me}_{3}\text{SiCH}_{2}\text{C}=\text{CCH}_{2}\text{N}(\text{i-Pr})(\text{CH}_{2})_{2}\text{OH} \\ & \text{(Rdt. 66\%) [27,28]} \end{aligned}$$

$$Me_{3}SiCH_{2}C \equiv CCH_{2}OCH_{2}OSiMe_{3} + Me_{3}SiCH_{2}C \equiv CCH_{2}OSiMe_{3}$$
(Rdt. 42%)
(Rdt. 13%)

La formation majoritaire de 3d résulte vraisemblablement d'une réaction d'hémiacétalisation entre l'alcoolate lithien normalement attendu et le formaldéhyde en excès, suivie d'une silylation.

Résultats obtenus avec les silanes 3a, 3b, et 3c

Pour chaque silane étudié, les meilleures conditions expérimentales ont été déterminées à partir de son action sur l'aldéhyde 4c, en présence de TiCl₄. Les résultats obtenus figurent dans les Tableaux 1, 2 et 3 et permettent de faire les remarques suivantes:

(1) Les silanes **3a** et **3b** réagissent dans de bonnes conditions (Rdt. 55-87%) avec les aldéhydes aliphatiques à groupe primaire, secondaire ou tertiaire pour conduire aux hétérocycles attendus; par contre, aucun produit défini n'a pu être isolé dans le cas de l'aldéhyde benzoïque. Cette réaction constitue donc une bonne méthode de synthèse de vinylidène-6 dioxépannes-1,4 et de thia-4 vinylidène-6 oxépannes-1 substitués en 7 par un groupe alkyle.

(2) En présence d'un excès de $TiCl_4$, le silane **3c** réagit également avec l'aldéhyde **4c**, montrant ainsi que l'obtention d'aza-4 vinylidène-6 oxépannes-1 est réalisable par cette méthode; cependant nous n'avons par réussi à étendre ce résultat aux autres aldéhydes aliphatiques.

La formation de tels hétérocycles peut être interprétée de la manière suivante [17]:

Généralisation au cas du silane 3d

Les résultats obtenus avec ce silane propargylique, dont la chaîne porte une fonction hémi-acétal O-silylée, sont rassemblés dans le Tableau 4. Nous constatons la formation du vinylidène-5 dioxanne-1,3 substitué en 6, avec tous les aldéhydes aliphatiques et aromatiques envisagés (4b-4e), avec des rendements de 50 à 95%.

La formation de ce dioxanne peut-être interprétée de la manière suivante:

Me3SiCH2C = CCH2OCH2OSIMe3 + RCHO ------

Cependant, avec les aldéhydes **4b** et **4c**, il se forme également une certaine quantité du même dioxanne que celui résultant de l'action du silane 2 $(\mathbb{R}^1, \mathbb{R}^2, \mathbb{R}^3, \mathbb{R}^4 = H)$ sur deux molécules d'aldéhyde [18].

Une telle réaction secondaire peut s'interpréter par l'intervention d'une deuxième molécule d'aldéhyde au niveau de l'intermédiaire réactionnel précédent. A remarquer que cette réaction secondaire n'intervient ni avec l'aldéhyde à groupe tertiaire 4d, ni avec l'aldéhyde aromatique 4e, vraisemblablement pour des raisons d'encombrement stérique; d'ailleurs, rappelons que les silanes 2 ne conduisent pas à des produits définis lors de leur action sur les aldéhydes 4d et 4e [18].

$$CH_2 = C = C \xrightarrow{O}_R + (CH_2O)_n + (Me_3Si)_2O$$

Action du silane 3a sur les aldéhydes en présence de TiCl₄

4	Conditions ^a	Produits obtenus	Rdt. (%)	
4a	5/1.5/3 14 h à 20 ° C	CH2=C=C (5a)	84	
4b	5/1.5/3 14 h à 20 ° C	CH2=C=C (5b)	87	
		Me ₃ SiCH ₂ C=CCH ₂ OCH ₂ CH ₂ OH	< 5	
4c	5/1.5/3 14 h à 20°C	$\begin{cases} CH_2 = C = C \\ CH_2 = C \\ CH_$	72	
		Me3SiCH2C =CCH2OCH2CH2OH	51	
4d	5/1.5/3 14 h à 20°C	CH2=C=C (5d)	40	
		МезsicH₂C≡ссH₂OCH₂CH₂OH	40	
4d	5/1.5/3 38 h à 20 ° C	$\begin{cases} CH_2 = C = C \\ O \\$	55	
4e	5/1.5/3	mélange de produits ^b dont:		
	38 h à 20 ° C	4e Me₁SiCH₂C≅CCH₂OCH₂CH₂OH	30 30	

^a mmol 4/mmol TiCl₄/mmol silane. ^b présence du motif allénique en IR.

4	Conditions ^a	Produits obtenus	Rdt. (%)	
4a	5/1.5/3 2 h à 20 ° C	$CH_2 \equiv C \equiv C$ (6a)	85	
4b	5/1.5/3 2 h à 20 ° C	CH2=C=C (6b)	78	
		Me3SiCH2C=CCH2SCH2CH2OH	14	
4c	5/1.5/3 2 h à 20°C	$ \begin{array}{c} CH_2 \equiv C \equiv C \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\$	80	
		Me ₃ SiCH ₂ C ≡ CCH ₂ SCH ₂ CH ₂ OH	76	
4d	5/1.5/3 2 h à 20°C	$CH_2 = C = C \qquad (6d)$	20	
		(Me ₃ SiCH ₂ C≡CCH ₂ SCH ₂ CH ₂ OH	40	
4d	5/1.5/3 20 h à 20 ° C	CH ₂ =C=C (6d)	58	
4e	5/1.5/3 20 h à 20 ° C	mélange de produits ^b dont; 4e Me₃SiCH₂C≡CCH₂SCH₂CH₂OH	31 26	

Action	đu	silane 3	b sur	les	aldéhydes 4	en	présence	de	TiCL
Action	uu	smane 5	D Sui	103	andenydes 4	U II	presence	uv	11014

^a mmol 4/mmol TiCl₄/mmol silane. ^b Présence du motif allénique en IR.

Essais de généralisation au cas du silane 3e

La réaction effectuée avec l'aldéhyde 4c, en présence de TiCl₄, n'a pas conduit à l'hétérocycle attendu, mais, seulement au dérivé chloroprénique résultant de la chloration par TiCl₄ de l'alcoolate α -allénique [8].

La réaction de cyclisation a pu être obtenue en opérant en présence de $BF_3 \cdot O(C_2H_5)_2$ (proportions 3/3/3, contact 20 h à 20°C), mais elle est nettement plus

Tableau 2

4	Conditions ^a	Produits obtenus	Rdt. (%)
4c	3/4/3 14 h à 20 ° C	Me ₃ SiCH ₂ C=CCH ₂ N(i-C ₃ H ₇)CH ₂ CH ₂ OH	80
	3/5/3	$\int Me_3SiCH_2C = CCH_2H(i-C_3H_7)CH_2CH_2OH$	25
4c	48 h à 20 ° C	$ \begin{pmatrix} CH_2 = C = C \\ CH_2 = C \\ CH$	57
4c	4/6/3 48 h à 20 ° C	$CH_2 = C = C \qquad (7c)$	86
4b	3/5/3 48 h à 20 ° C	mélange ^b de produits dont: Me₃SiCH₂C≡CCH₂N(i-C₃H7)CH2CH2OH	30
4b	4/6/3 48 h à 20 ° C	mélange ^b de produits dont Me₃SiCH₂C≡CCH₂N(i-C₃H7)CH2CH2OH	25

Action de 3c sur les aldéhydes 4 en présence de TiCl₄.

difficile à obtenir que dans les cas précédents, ce qui est tout à fait similaire aux observations faites pour la formation de cycles à huit chaînons [17]:

Malgré cette restriction, notre méthode a permis l'accès à un alkyl-8 vinylidène-7 dioxocanne-1,5.

Conclusion

Cette étude nous a montré que la préparation de silanes propargyliques, dont la chaîne comporte deux hétéroatomes plus ou moins éloignés l'un de l'autre, est réalisable; elle a également montré que l'action de tels silanes sur un aldéhyde permet d'obtenir des hétérocycles à six, sept et même huit chaînons, comportant deux hétéroatomes, identiques ou différents, ainsi qu'un groupe vinylidène exocyclique.

^a mmol 4/mmol TiCl₄/mmol silane. ^b Présence du motif allénique en IR.

Acide de Lewis	Condi- tions ^a	Produits obtenus	Rdt. (%)
BF ₃ ·Ether	3/3/3 1 h à 20°C	mélange de produits dont CH ₂ =C=C 	< 5
		Me ₃ SiCH ₂ C=CCH ₂ OH	13
TiCl ₄	4/1.5/3		32
	That C	$\left(\begin{array}{c} -\left\langle \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	50
T' CI	7 (1 5 (2		29
TICI ₄	1 h à 0°C	$ \begin{cases} CH_2 = C = C \\ -C \\ 18 \end{bmatrix} CH_2 = C = C \\ CH_2 = C = C \end{cases} $) 64
			31
TiCl₄	7/1.5/3 1 h à 0 ° C	CH ₂ =C=C >-0	51
		[18] CH ₂ =C=C (8b	68
TiCl4	7/1.5/3	CH2=C=C (8d)	95
	7 h à 0 ° C	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
		Me ₃ SiCH ₂ C = CCH ₂ OH	30
TiCl ₄	7/1.5/3 1 h à 0 ° C	4e	30
		$\begin{pmatrix} CH_2 = C = C \\ \downarrow \\ H_5C_6 \end{pmatrix} (Be)$	36
TO	7 (1 5 (2		20
ncr ₄	8 h à 0°C		60
	Acide de Lewis $BF_3 \cdot Ether$ $TiCl_4$ $TiCl_4$ $TiCl_4$ $TiCl_4$ $TiCl_4$ $TiCl_4$	Acide de Lewis Condi- tions a $BF_3 \cdot Ether$ $3/3/3$ 1 h à 20 ° C $TiCl_4$ $4/1.5/3$ 1 h à 0 ° C $TiCl_4$ $7/1.5/3$ 1 h à 0 ° C $TiCl_4$ $7/1.5/3$ 8 h à 0 ° C	Acide de LewisCondi- tions aProduits obtenusBF3·Ether $3/3/3$ 1 h à 20°Cmélange de produits dont $CH_2=C=c - o - f - f - f - f - f - f - f - f - f$

Action du silane 3d sur les aldéhydes 4, en présence d'un acide de Lewis

^{*a*} mmol 4/mmol acide de Lewis/mmol silane.

Partie expérimentale

Les chromatographies en phase gazeuse ont été effectuées avec un appareil Intersmat IGC 12M (détecteur à conductibilité thermique) équipé d'une colonne analytique de 2m (diamètre: 0.63 cm) à remplissage 20% SE 30, ou avec un appareil 90P3 Aerograph (détecteur à conductibilité thermique) équipé de colonnes préparatives de 3 à 6 m (diamètre 0.95 cm) à remplissage 30% SE 30.

Les spectres infra-rouge ont été enregistrés sur les produits à l'état pur entre lames de chlorure de sodium avec un appareil IR 4240 Beckman. Intensités des bandes: F forte, m moyenne, f faible et tf très faible.

Les spectres RMN ont été enregistrés en solution dans CCl_4 à 60 MHz sur un appareil Perkin-Elmer R24A. Les déplacements chimiques sont exprimés en ppm par rapport au tétraméthylsilane utilisé comme référence.

L'appareillage classiquement utilisé pour la préparation des matières premières est constitué par un ballon à trois tubulures de volume convenable, muni d'un agitateur mécanique, d'un réfrigérant à eau, d'un thermomètre et d'une ampoule à pression égalisée pour l'introduction des réactifs liquides.

Les produits nouveaux ont donné des résultats analytiques correspondant à la formule $\pm 0.3\%$.

Préparation des silanes 3

Ils sont préparés selon les schémas réactionnels indiqués dans la partie théorique, en utilisant les modes opératoires classiques décrits dans la littérature [19-28].

Les caractéristiques physiques et spectroscopiques des composés 3 figurent dans le Tableau 5.

Réaction des silanes 3 avec les dérivés carbonylés 4, en présence d'un catalyseur

Appareillage. Toutes les réactions sont effectuées sous atmosphère d'azote. On utilise un ballon de 100 ml à trois tubulures, préalablement séché à la flamme sous courant d'azote, équipé d'un agitateur mécanique, d'un thermomètre et d'une arrivée d'azote. Le solvant, les réactifs et le catalyseur sont introduits dans le ballon à l'aide d'une seringue à travers un septum. Les basses températures nécessaires sont obtenues en maintenant le ballon dans les vapeurs d'un bain d'azote liquide.

Solvant. CH_2Cl_2 : le produit commercial est distillé sur P_2O_5 , sous atmosphère d'azote.

Catalyseurs. TiCl₄: le produit commercial est utilisé tel quel; il est conservé sous atmosphère d'azote.

 $BF_3 \cdot O(C_2H_5)_2$: le produit commercial est redistillé et conservé sous atmosphère d'azote.

Mode opératoire général

Au réactif électrophile en solution dans CH_2Cl_2 (10 ml), on ajoute à $-65^{\circ}C$ le catalyseur, puis à $-60^{\circ}C$ le silane 3. On laisse le milieu réactionnel revenir à 0 ou 20 °C (voir Tableaux) et on maintient cette température durant le temps voulu.

Le milieu réactionnel est alors traité par 50 ml de solution saturée en NaHCO₃ et extrait par 3×40 ml d'éther. La phase organique est séchée sur K₂CO₃ et distillée sous pression réduite partielle après élimination des solvants. Le produit de la réaction est analysé par CPG à l'aide d'une colonne à remplissage SE 30 et/ou carbowax.

Remarque: Tous les produits ont été isolés par CPG préparative à l'aide d'une colonne à remplissage SE30 ou carbowax.

Produits obtenus: Ce sont tous des produits nouveaux. Les caractéristiques physiques et spectroscopiques des hétérocycles dioxygénés 5, 8, 9, figurent dans le

3	Rdt. (%)	Eb. ° C/Torr	n_D^{20}	$IR(cm^{-1})$	RMN (CCl ₄ , δ (ppm))
3a	94	86/0.1	1.4436	2210m (C=C); 1250F, 835F, 750m (SiMe ₃) 1125F (C-O); 1090 (Si-O)	0.08 (s,9H,SiMe ₃); 0.10(s, 9H,OSiMe ₃); 1.40 (t, <i>J</i> 2.4 Hz,2H,CH ₂ Si); 3.25-3.80 (m,4H,OCH ₂); 4,00 (t, <i>J</i> 2.4 Hz,2H,C ₂)
3b	85	102/0.1	1.4749	2220m (C=C); 1240F, 840F, 755f (SiMe ₃); 1085F (Si-O); 660f (C-S)	0.12 (s,18H,SiMe ₃); 1.45 (t, J 2.5 Hz,2H,CH ₂ Si); 2.65(t, J 7 Hz,2H,CH ₂ S); 3.15(t, J 2,5 Hz,2H,CH ₂); 3.65(t, J 7 Hz,2H,CH ₂ O)
3c	76	114/0.5	1.4501	2230f (C=C); 1250F, 835F, 755m (SiMe ₃); 1085F (Si-O)	0.08(s,9H,SiMe ₃); 0.10(s, 9H,OSiMe ₃); 1.00(d, <i>J</i> 6.3 Hz,6H,CH ₃); 1.40(t, <i>J</i> 2.3 Hz,2H,CH ₂ Si); 2.50(t, <i>J</i> 6.5 Hz,2H,CH ₂ N); 2.85 (hept. <i>J</i> 6.3 Hz,1H,CH); 3.25(t, <i>J</i> 2.3 Hz,2H,CH ₂); 3.50(t, <i>J</i> 6.5 Hz,2H,OCH ₂)
3d	42	66/0.1	1.4408	2215m (C≡C); 1250F, 840F, 755m (SiMe ₃); 1040F (C−O)	0.12(s,18H,SiMe ₃); 1.43 (t, J 2.5 Hz,2H,CH ₂); 4.07 (t, J 2.5 Hz,2H,OCH ₂); 4.80(s,2H,OCH ₂ O).
3e	81	111/0.2	1.4442	2210m(C≡C); 1250F, 840F, 755m (SiMe ₃); 1120F (C−O); 1085F (Si−O)	0.05(s,9H,SiMe ₃); 0.10(s, 9H,SiMe ₃); 1.45(t, J 2.5 Hz,2H,CH ₂ Si); 1.70(q, J 6 Hz, 2H,CH ₂); 3.45(t, J 6 Hz,2H,CH ₂ OSi); 3.60(t, 6 Hz,2H,OCH ₂); 3.95(t, J 2.5 Hz,2H,CH ₂ C=C)

Caractéristiques physiques et spectrocopiques des silanes 3

Tableau 6. Les caractéristiques physiques et spectroscopiques des thia-4 vinylidène-6 oxépannes-1 (6) figurent dans le Tableau 7.

N-Isopropyl aza-4 isopropyl-7 vinylidène-6 oxépanne-1 (7c). $n_D^{20} = 1.4793$; IR(cm⁻¹): 3080f, 1955F, 840F (C=C=C); 1100F (C-O-C). RMN(CCl₄, δ (ppm): 0.85 (d, 6H, CH₃); 0.95 (d, 6H, NCH(CH₃)₂); 1.55–2.10 (m, 1H, CH–CHO); 2.40–2.80 (m, 2H, CH₂N); 2.85 (h, 1H, CH); 2.95–3.20 (m, 2H, =CCH₂); 3.25–4.00 (m, 3H, CHOCH₂); 4.50–4.75 (m, 2H, CH₂=).

IR (cm⁻¹): 344OF (OH); 1615m, 885F (CH₂=C-C=CH); 1100F (C-O-C).

Tableau 5

Caractéristiques physiques et spectroscopiques des hétérocycles dioxygénés 5 (n = 2), 8 (n = 1) et 9 (n = 3):

H ₂ C H	۲, ۲, ۲, ۳, ۳, ۳, ۳, ۳, ۳, ۳, ۳, ۳, ۳, ۳, ۳, ۳,			
Hétéro- cycle	R	n ²⁰	IR (cm ⁻¹)	RMN (CCl ₄ , ð (ppm))
Sa	CH,		3050f,1950F,840F (C=C=C); 1115F (C-O)	1.20(d,3H,CH ₃); 3.20–4.30 (m,7H,OCH,OCH ₂); 4.50–4.90 (m,2H,CH ₂ =)
Sb	C ₂ H ₅	1.4860	3050f,1950F,840F (C=C=C), 1115F (C-O)	$0.90(t, J T Hz, 3H, CH_3)$; $1.20-1.85(m, 2H, CH_2 - CH_3)$; $3.15-4.35(m, 7H, OCH, OCH_2)$; $4.50-4.90(m, 2H, CH_2^{=})$
ير م	(CH ₃) ₂ CH	1.4830	3050f,1950F,840F (C=C=C); 1110F (C-O)	0.85(d.J 6 Hz,6H,CH ₃); 1.45-2.15(m,1H,CH); 3.35-4.20 (m,7H,OCH ₂ ,OCH);4.60-4.85(m,2H,CH ₂ =)
S.	Allyk(CH ₃) ₂ C	1.4781	3070m,1640m,1000m,910m (CH ₂ =CH); 1950F, 840F(C=C=C); 1120F (C−O)	0.85(s,6H,CH ₃); 1.80–2.30(m,2H,CH ₂ C=); 3.35–4.20(m, 7H,OCH ₂ ,OCH); 4.60–5.15(m,4H,CH ₂ =); 5.40–6.15(m,1H (CH=)
48	C_2H_5	1.4798	3060f, 1965F, 840F (C=C=C); 1085F, 1010F (C-O)	0.85(t,J 7 Hz,3H,CH ₃); 1.30–1.80(m,2H,CH ₂ –CH ₃); 4.00– 4.60(m,5H,OCH ₂ ,OCH); 4.60–5.00(m,2H,CH ₂ ≃)
æ	(CH ₃) ₂ CH	1.4751	3060f, 1965F, 840F (C=C=C); 1085F, 1010F (CO)	0.85(d,J 6Hz,6H,CH ₃); 1.35-2.15(m,1H,CH); 4.00-4.60 (m,5H,OCH ₂ ,OCH); 4.60-4.95(m,2H,CH ₂ =)
28	Allyl(CH ₃) ₂ C	1.4839	3075m, 1640m, 990F, 910F, (CH ₂ =CH); 1965F, 840F (C=C=C); 1090F, 1020F (C-O)	0.85(s,6H,CH ₃); 2.00(d,J 8 Hz,2H,CH ₂ C=); 3.95-4.60(m, 5H,OCH ₂ ,OCH); 4.60-5.15(m,4H,CH ₂ =); 5.35-6.15(m,1H, CH=)
æ	C ₆ H ₅	ł	3070f, 3040f, 1600f, 740m, 690m (C ₆ H ₅); 1965m, 850F (C=C=C); 1090F, 1020F (C–O)	4.30-4.70(m,4H,CH ₂); 4.70-5.00(m,2H,CH ₂ =); 5.40(s, 1H,CH); 7.10-7.60(m,5H,C ₆ H ₅)
સ	(CH ₃) ₂ CH	1	3050tf, 1950F, 845F (C=C=C); 1110F (C-O)	0.80(d) et 0.95(d) (6H,CH ₃);1.40–2.00(m,3H,CH ₂ ,C H); 3.25–4.15(m,7H,OCH ₂ ,OCH); 4.60–4.80(m,2H,CH ₂ =)
^a Spectre de 1	nasse: <i>m/e</i> 168 (M ⁺),	, 153, 125, 93, 9	01, 81, 73, 52 interalia.	

53

6	R	$n_{\rm D}^{20}$	IR(cm ⁻¹)	RMN(CCl ₄ , δ ppm))
ба	CH ₃	1.5451	3050f,1950F, 845F (C=C=C); 1095 (C-O); 660f(C-S)	1.20(d,3H,CH ₃); 2.40–4.50(m, 7H,CH ₂ ,CH); 4.60–4.85(m,2H, CH ₂ =)
ճն	C ₂ H ₅	1.5377	3050f,1950F,845F (C=C=C);1095F (C-O);660f(C-S)	$0.90(t, J 7 Hz, 3H, CH_3);$ $1.25-1.70(m, 2H, CH_2 - CH_3);$ $2.25-4.45(m, 7H, CH_2, CH);$ $4.60-4.85(m, 2H, CH_2=)$
бс ^а	(CH ₃) ₂ CH	1.5297	3050f,1950F,845F (C=C=C); 1090F (C-O); 660f(C-S)	0.90(d, J 6,8 Hz,6H,CH ₃); 1.50–2.15 (m,1H,CH); 2.55–3.05 (m,2H,CH ₂ S); 3.10–3.45(m,2H, OCH ₂); 3.50–4.10(m,2H,=CCH ₂); 4.25–4.55(m,1H,OCH); 4.70– 4.95(m,2H,CH ₂ =)
6d	Allyl(CH ₃)C		3070f,1640m, 995m,910m (CH ₂ =C); 3050f, 1950F,845F (C=C=C); 1095F (C-O); 660f(C-S)	0.85(s,6H,CH ₃); 1.90–2.20(m, 2H,CH ₂ –C=); 2.50–2.95(m,2H, CH ₂ S); 3.00–3.40(m,2H,OCH ₂); 3.45–3.90(m,2H,=CCH ₂ S); 4.15– 4.60(m,1H,OCH); 4.65–5.15(m, 4H,CH ₂ =); 5.20–6.15(m,1H,CH=)

Caractéristiques physiques et spectroscopiques des thia-4 vinylidène-6 oxépannes-1 (6)

^a Spectre de masse: m/e 184 (M^+); 184, 169, 141, 113, 89, 84, 79, 77, 60, 52 interalia. RMN ¹³C (CDCl₃, δ (ppm)/TMS); 17.62 (q, J 125.8 Hz, CH₃); 19.30 (q, J 125.8 Hz, CH₃); 32.74 (t, J 141.7 Hz, CH₂S); 33.43 (d, J 117.4 Hz, CH); 33.91 (t, J 136.9 Hz, =C-CH₂); 74.27 (t, J 142.6 Hz, CH₂O); 76.83 (t, J 167.8 Hz, CH₂=); 85.63 (d, J 145.4 Hz, CHO); 105.45 (s, =C); 206.09 (s, =C=).

1er isomère élué en CPG préparative. RMN (CCl₄, δ (ppm): 1.00 (d, 6H, CH₃); 1.25 (s, 1H, OH); 1.55–1.90 (m, 2H, CH₂); 2.50–3.05 (m, 1H, CH(CH₃)₂); 3.40–3.80 (m, 4H, OCH₂); 3.95 (s, 2H, =CCH₂); 5.20 (s, 1H) et 5.40 (s, 1H)(CH₂=); 5.35 (d, 1H, CH).

2ème isomère élué en CPG préparative. RMN (CCl₄, δ (ppm): 1.00 (d 6H, CH₃); 1.20 (s, 1H, OH); 1.50–1.90 (m, 2H, CH₂); 2.40–3.00 (m, 1H, CH); 3.25–3.80 (m, 4H, OCH₂); 4.10 (s, 2H, =C-CH₂); 5.25 (s, 1H) et 5.45 (s, 1H) (CH₂=); 6.00 (d, 1H, CH).

Bibliographie

- 1 P. Bourgeois et G. Mérault, C.R. Acad. Sci. Sér. C, 273 (1971) 714.
- 2 P. Bourgeois et G. Mérault, J. Organomet. Chem., 39 (1972) C44.
- 3 G. Déléris, J. Dunoguès et R. Calas, J. Organomet. Chem., 93 (1975) 43.
- 4 J. Pornet, Tetrahedron Lett., (1980) 2049.
- 5 A.D. Despo, S.K. Chiu, T. Flood et P.E. Peterson, J. Am. Chem. Soc., 102 (1980) 5120.
- 6 R. Schmid, P.L. Huesmann et W.S. Johnson, J. Am. Chem. Soc., 102 (1980) 5122.
- 7 T. Flood et P.E. Peterson, J. Org. Chem., 45 (1980) 5006.
- 8 J. Pornet, Tetrahedron Lett., (1981) 453.
- 9 J. Pornet, Tetrahedron Lett., (1981) 455.
- 10 J. Pornet et B. Randrianoelina, Tetrahedron Lett., (1981) 1327.
- 11 J.P. Pillot, B. Bennetau, J. Dunoguès et R. Calas, Tetrahedron Lett., (1981) 3401.

Tableau 7

- 12 J. Pornet et N'B. Kolani, Tetrahedron Lett., (1981) 3609.
- 13 B. Bennetau, J.P. Pillot, J. Dunoguès et R. Calas, J. Chem. Soc. Chem. Comm., (1981) 1094.
- 14 J. Pornet, K. Jaworski, N'B. Kolani, D. Mesnard et L. Miginiac, J. Organomet. Chem., 236 (1982) 177.
- 15 J. Pornet, D. Mesnard et L. Miginiac, Tetrahedron Lett., (1982) 4083.
- 16 J. Pornet, L. Miginiac, K. Jaworski et B. Randrianoelina, Organometallics, 4 (1985) 333.
- 17 J. Pornet, D. Damour et L. Miginiac, Tetrahedron, 42 (1986) 2017.
- 18 J. Pornet, D. Damour, B. Randrianoelina et L. Miginiac, Tetrahedron, 42 (1986) 2501.
- 19 R. Faure et G. Descotes, Bull. Soc. Chim. Fr., (1966) 1569.
- 20 A.T. Bottini, F.P. Corson et E.F. Bottner, J. Org. Chem., 30 (1965) 2988.
- 21 A.T. Bottini et E.F. Bottner, J. Org. Chem., 31 (1966) 385 et 389.
- 22 W. Greene, Protective Groups in Organic Synthesis, J. Wiley, New York, 1981, p. 21 et réf. incluses.
- 23 S.R. Sandler et W. Karo, Organic Functional Group Preparations, Academic Press, New York, 1972, Vol. III, p. 21 et réf. incluses.
- 24 S.K. Chiu et P.E. Peterson, Tetrahedron Lett., (1980) 4047.
- 25 E.J. Corey et B.B. Snider, J. Am. Chem. Soc., 94 (1972) 2549.
- 26 J.H. Biel, J. Am. Chem. Soc., 71 (1949) 1306.
- 27 L. Brandsma, Preparative Acetylenic Chemistry, Elsevier, Amsterdam, 1971, p. 58.
- 28 R. Mornet, Thèse de Doctorat d'Etat, 1973, Paris, p. 13.